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Abstract

Goal-Oriented (GO) Dialogue Systems, colloqui-
ally known as goal oriented chatbots, help users
achieve a predefined goal (e.g. book a movie ticket)
within a closed domain. A first step is to understand
the user’s goal by using natural language under-
standing techniques. Once the goal is known, the
bot must manage a dialogue to achieve that goal,
which is conducted with respect to a learnt policy.
The success of the dialogue system depends on the
quality of the policy, which is in turn reliant on the
availability of high-quality training data for the pol-
icy learning method, for instance Deep Reinforce-
ment Learning.
Due to the domain specificity, the amount of avail-
able data is typically too low to allow the training of
good dialogue policies. In this paper we introduce
a transfer learning method to mitigate the effects
of the low in-domain data availability. Our transfer
learning based approach improves the bot’s success
rate by 20% in relative terms for distant domains
and we more than double it for close domains, com-
pared to the model without transfer learning. More-
over, the transfer learning chatbots learn the policy
up to 5 to 10 times faster. Finally, as the trans-
fer learning approach is complementary to addi-
tional processing such as warm-starting, we show
that their joint application gives the best outcomes.

1 Introduction
Text-based Dialogue Systems, colloquially known as chat-
bots, are widely used today in a plethora of different applica-
tions, ranging from trivial chit-chatting to personal assistants.
Depending on the nature of the conversation, the Dialogue
Systems can be classified in i) open-domain [Serban et al.,
2016; Vinyals and Le, 2015] and ii) closed-domain Dialogue
Systems [Wen et al., 2016]. Goal-Oriented (GO) Chatbots
are designed to help users to achieve predetermined goals
(e.g. book a movie ticket) [Peng et al., 2017]. These bots
are closed-domain and can be grouped together in larger sys-

Figure 1: Model of the Goal-Oriented Dialogue System operating
on a semantic level. We transfer the in-domain knowledge.

tems such as Amazon Alexa1 to give the impression of a gen-
eral coverage. Each individual component (which in Amazon
Alexa can be viewed as skills of the overarching generalist
bot) is closed-domain in nature.

The availability of data within a closed domain poses a ma-
jor obstacle in the development of useful GO dialogue sys-
tems. Not all systems have the same data requirements. There
are two dominant paradigms in Goal-Oriented (GO) Dialogue
Systems implementations. The first type are fully supervised,
sequence-to-sequence [Sutskever et al., 2014] models, that
encode a user request and its context and decode a bot answer
directly. The fully supervised Goal-Oriented chatbots require
a considerable amount of annotated dialogues, because they
mimic the knowledge of the expert [Wen et al., 2016].

A second type are algorithms based on reinforce-
ment learning (RL), for instance based on Deep Q-Nets
(DQN) [Mnih et al., 2015]. The DQN technique success-
fully applies a supervised learning methodology in the task
of reinforcement learning. In their work, [Li et al., 2017]
use it to successfully build a Goal-Oriented Dialogue System
in the domain of movie booking. The lack of in-domain di-
alogue data is a key problem for training high quality DQN-
based Goal-Oriented chatbots. We need in-domain labeled

1https://developer.amazon.com/alexa
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dialogues for two reasons: i) to warm-start the chatbot, which
is a standard widely used technique and ii) to train the chat-
bot by simulating a considerable number of different conver-
sations.

RL bots require less annotated dialogues than their
sequence-to-sequence counterparts, due to their ability to
simulate the conversation, thus exploring the unknown dia-
logue space more efficiently. The data requirements are how-
ever not trivial and obtaining the dialogue data is still the
biggest obstacle their creators face.

In this paper, we show that we can build better Goal-
Oriented Dialogue Systems using Transfer Learning. We
leverage the similarity between a source and a target domain,
as many domains, such as restaurant and movie booking,
share to a large extent some common information. In ear-
lier work, bots were created independently for each domain
(e.g. [Li et al., 2017] created a bot for movie booking and
[Wen et al., 2016] one for restaurant reservations). These two
domains include information for time and place. We believe
this information need not be learnt twice and that a transfer
is possible. We show this possible connection graphically in
Figure 1.

We distinguish two cases: i) when the two domains have
an overlap and ii) when one domain is an extension of an-
other. To the best of our knowledge we are the first ones to
successfully use and combine the Transfer Learning and the
Goal-Oriented Chatbots based on the Deep Reinforcement
Learning techniques. The contributions of this work are the
following:

• Training GO chatbots with less data: In data con-
strained environments, models trained with transfer
learning achieve better training and testing performances
than ones trained independently.
• Better GO chatbot performance: Using transfer learn-

ing has a significant positive effect on performance even
when all the data from the target domain is available.
• Intuitions on further improvements: We show the

gains obtained with transfer learning are complementary
to the ones due to warm-starting and the two can be suc-
cessfully combined.
• New published datasets: We publish new datasets for

training Goal-Oriented Dialogue Systems, for restaurant
booking and tourist info domains2. They are derived
from the third Dialogue State Tracking Challenge [Hen-
derson et al., 2013].

The rest of the paper is organized as follows: Section 2
presents the related work for Goal-Oriented Dialogue Sys-
tems based on Deep Reinforcement Learning techniques and
for bots in data-constrained environments. Our model is fully
detailed in Section 3. We further describe the use of Transfer
Learning technique in Section 4. We conduct our experiments
and show the results in Section 5. Finally, we conclude our
work in Section 6.

2https://github.com/IlievskiV/Master Thesis GO Chatbots

2 Related Work
2.1 Goal-oriented Dialogue Systems
The Goal-Oriented Dialogue Systems have been under de-
velopment in the past two decades, starting from the basic,
handcrafted Dialogue Systems [Zue et al., 2000]. The recent
efforts to build such systems are generally divided in two lines
of research.

The first way is to treat them in an end-to-end, fully su-
pervised manner, in order to use the power of the deep neu-
ral networks based on the encoder-decoder principle to infer
the latent representation of the dialogue state. The authors
in [Vinyals and Le, 2015] used standard Recurrent Neu-
ral Networks (RNNs) and trained a Goal-Oriented Chatbot
in a straightforward sequence-to-sequence [Sutskever et al.,
2014] fashion. On the other hand, [Serban et al., 2016] uti-
lized a hierarchical RNNs to do the same task. Additionally,
in their work [Bordes and Weston, 2016] used the memory
networks [Sukhbaatar et al., 2015] to build a Goal-Oriented
Chatbot for restaurant reservation.

Another branch of research had emerged, focusing on the
Deep Reinforcement Learning because the supervised ap-
proach is data-intensive. These techniques require less an-
notated data because of their sequential nature to simulate
the dialogue and explore different aspects of the dialogue
space. In their work [Li et al., 2017; Dhingra et al., 2016;
Cuayáhuitl, 2017] successfully applied the Deep Reinforce-
ment Learning combined with a user simulator to build GO
Dialogue Systems.

However, these models are quite complex since they in-
clude many submodules, such as Natural Language Under-
standing (NLU) [Hakkani-Tür et al., 2016] and Natural Lan-
guage Generation (NLG) [Wen et al., 2015] units, as well
as a Dialogue State Tracker (DST), which introduce signif-
icant noise. For this reason, there is a line of research that
combined both approaches. In their work [Su et al., 2016]
first trained the policy network in a supervised learning fash-
ion and then fine-tuned the policy using the Reinforcement
Learning.

2.2 Data-constrained Dialogue Systems
One desired property of the Goal-Oriented Dialogue Systems
is the ability to switch to new domains and at the same time
not to lose any knowledge learned from training on the previ-
ous ones. In this direction, the authors in [Gašić et al., 2015]
proposed a Gaussian Process-based technique to learn generic
dialogue polices. These policies with a little amount of data
can be furthermore adjusted according to the use case of the
dialogue system. On the other hand, [Wang et al., 2015]
learned domain-independent dialogue policies, such that they
parametrized the ontology of the domains. In this way, they
show that the policy optimized for a restaurant search domain
can be successfully deployed to a lap-top sale domain. Last
but not the least, [Lee, 2017] utilized a continual learning, to
smoothly add new knowledge in the neural networks that spe-
cialized a dialogue policy in an end-to-end fully supervised
manner.

Nevertheless, none of the previously mentioned papers
tackles the problem of transferring the domain knowledge in
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case when the dialogue policy is optimized using a Deep Re-
inforcement Learning. In our work, we propose such method,
based on the standard Transfer Learning technique [Pan and
Yang, 2010]. Therefore, using this method we surpass the
limitations to transfer the in-domain knowledge in Goal-
Oriented Dialogue Systems based on the Deep RL.

3 Transfer Learning for Goal-Oriented
Chatbots

Our primary goal is to use transfer learning to increase a chat-
bot’s success rate. The success rate is the fraction of suc-
cessfully conducted dialogues. A successful dialogue is one
where the user gets a satisfactory answer before the maximum
number of dialogue turns is exhausted.

3.1 Model
Our work is based on the model from [Li et al., 2017], who
proposed an end-to-end reinforcement learning approach.
[Li et al., 2017] use an agenda-based user simulator to build
a Goal-Oriented Chatbot in a movie booking domain.

Goal-oriented bots contain an initial natural understand-
ing (NLU) component, that is tasked with determining the
user’s intent (e.g. book a movie ticket) and its parameters, also
known as slots (e.g. date: today, count: three people, time: 7
pm). The usual practice in the RL-based Goal-Oriented Chat-
bots is to define the user-bot interactions as semantic frames.
At some point t in the time, given the user utterance ut, the
system needs to perform an action at. A bot action is, for in-
stance, to request a value for an empty slot or to give the final
result.

The entire dialogue can be reduced to a set of slot-value
pairs, called semantic frames. Consequently, the conversation
can be executed on two distinct levels:

• Semantic level: the user sends and receives only a se-
mantic frames as messages.

• Natural language level: the user sends and receives nat-
ural language sentences, which are reduced to, or de-
rived from a semantic frame by using Natural Language
Understanding (NLU) and Natural Language Generation
(NLG) units respectively [Wen et al., 2015; Hakkani-Tür
et al., 2016].

The composition of the Dialogue System we are using is
shown in Figure 1. It consists of two independent units: the
User Simulator on the left side and the Dialogue Manager
(DM) on the right side. We operate on the semantic level, re-
moving the noise introduced by the NLU and NLG units. We
want to focus exclusively on the impact of transfer learning
techniques on dialog management.

3.2 User Simulator
The User Simulator creates a user - bot conversation, given
the semantic frames. Because the model is based on Rein-
forcement Learning, a dialogue simulation is necessary to
successfully train the model. The user simulator we use in
this work is based on the work by [Li et al., 2016].

From the dataset of available user goals the Simulator ran-
domly picks one, which is unknown for the Dialogue Man-
ager. The user goal consists of two different sets of slots:
inform slots and request slots.
• Inform slots are the slots for which the user knows

the value, i.e. they represent the user constraints
(e.g. {movie name: “avengers”, number of people:
“3”, date: “tomorrow”}).
• Request slots are ones for which the user is looking for

an answer (e.g. { city, theater, start time } }).
Having the user goal as an anchor, the user simulator gener-
ates the user utterances ut. The initial user utterance, similar
to the user goal, consists of the initial inform and request sets
of slots. Additionally, it includes a user intent, like open dia-
logue or request additional info.

The user utterances generated over the course of the con-
versation follow an agenda-based model [Schatzmann and
Young, 2009]. According to this model, the user is having
an internal state su, which consists a goal G and an agenda
A. The goal furthermore is split in user constraints C and
user requests R. In every consecutive time step t, the user
simulator creates the user utterance ut, using its current state
su and the last system action at. In the end, using the newly
generated user utterance ut, it updates the internal state s′u.

3.3 Dialogue Manager
The Dialogue Manager (DM), as its name suggests, manages
the dialogue flow in order to conduct a proper dialogue with
the user. The DM is composed by two trainable subcom-
ponents: the Dialogue State Tracker (DST) and the Policy
Learning Module, i.e. the agent. Additionally, the Dialogue
Manager exploits an external Knowledge Base (KB), to find
and suggest values for the user requests. Therefore, it plays a
central role in the entire Dialogue System.

Dialogue State Tracker
The responsibility of the Dialogue State Tracker (DST) is to
build a reliable and robust representation of the current state
of the dialogue. All system actions are based on the cur-
rent dialogue state. It keeps track of the history of the user
utterances, system actions and the querying results from the
Knowledge Base. It extracts features and creates a vector em-
bedding of the current dialogue state, which is exposed and
used by the Policy Learning module later on. In order to pro-
duce the embeddings, the Dialogue State Tracker must know
the type of all slots and intents that might occur during the
dialogue. Since we operate on a semantic level (i.e. not in-
troducing any additional noise), we employ a rule-based state
tracker as in [Li et al., 2017].

Policy Learning
The Policy Learning module selects the next system ac-
tions to drive the user towards the goal in the smallest num-
ber of steps. It does that by using the deep reinforcement
neural networks, called Deep Q-Networks (DQN) [Mnih et
al., 2015]. DQNs successfully approximate the state-action
function Q (s, a|θ) - a standard metric in the Reinforcement
Learning, with latent parameters θ. Q (s, a|θ) is the utility
of taking an action a, when the agent is perceiving the state

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4117



(a) The training process without transfer learning (b) The training process with transfer learning

Figure 2: Comparison of the Goal-Oriented Dialogue System training process, without transfer learning (left side) and with transfer learning
(right side).

s, by following a policy π = P (a|s). The utility measure is
defined as the problem of maximizing the cumulative future
reward that the agent will receive.

DQNs contain a biologically inspired mechanism, called
experience replay. They store the agent’s experiences
et = (st, at, rt, st+1) in an experience replay buffer Dt =
{e1, · · · , et}, thus creating mini-batches of experiences, uni-
formly drawn from Dt used to train the neural net.

In our case, the agent is getting the new state st from the
Dialogue State Tracker (DST) and then it takes a new action
at, based on the ε-greedy policy. It means, with a probability
ε ∈ [0, 1] it will take a random action, while with a proba-
bility 1 − ε it will take the action resulting with a maximal
Q-value. We thus trade between the exploration and exploita-
tion of the dialogue space. For each slot that might appear
in the dialogue, the agent can take two actions: either to ask
the user for a constraining value or to suggest to the user a
value for that slot. Additionally, there is a fixed size of slot-
independent actions, to open and close the conversation.

The agent receives positive and negative rewards accord-
ingly, in order to force the agent to successfully conduct the
dialogue. It is successful if the number of totally required dia-
logue turns to reach the goal is less than a predefined maximal
threshold nmax turns. For every additional dialogue turn, the
agent receives a predefined negative reward rongoing . In the
end, if the dialogue fails, it will receive a negative reward
rnegative equal to the negative of the predefined maximal al-
lowed dialogue turns. If the dialogue is successful, it will
receive a positive reward rpositive, two times the maximal al-
lowed dialogue turns.

An important addition is the warm-starting technique that
fills the experience replay buffer with experiences coming
from a successfully finished dialogues i.e. with positive ex-
periences. This dramatically boosts the agent’s performances
before the actual training starts, as will be shown in Section
5.2. The training process continues with running a fixed num-
ber of independent training epochs nepochs. In each epoch we

simulate a predefined number of dialogues ndialogues, thus
filling the experience memory buffer. The result consists of
mini-batches to train the underlying Deep Q-Net.

During the training process, when the agent reaches for the
first time a success rate greater or equal to the success rate of
a rule-based agent srule based, we flush the experience replay
buffer, as described in detail in [Li et al., 2017].

4 Transfer Learning
The main goal of this work is to study the impact of a widely
used technique - Transfer Learning on goal oriented bots.
As the name suggests, transfer learning transfers knowledge
from one neural network to another. The former is known as
the source, while the latter is the target [Pan and Yang, 2010].
The goal of the transfer is to achieve better performance on
the target domain with limited amount of training data, while
benefiting from additional information from the source do-
main. In the case of dialogue systems, the input space for both
source and target nets are their respective dialogue spaces.

The training process without transfer learning, shown in
Figure 2a, processes the two dialogue domains independently,
starting from randomly initialized weights. The results are
dialogue states from separate distributions. Additionally, the
sets of actions the agents might take in each domain are also
independent.

On the other hand, as depicted in Figure 2b if we want to
benefit from transfer learning, we must model the dialogue
state in both domains, as if they were coming from the same
distribution. The sets of actions have to be shared too. The
bots specialized in the source domain must be aware of the
actions in the second domain, even if these actions are never
used, and vice versa. This requirement stems from the impos-
sibility of reusing the neural weights if the input and output
spaces differ. Consequently, when we train the model on the
source domain, the state of the dialogue depends not only on
the slots that are specific to the source, but also on those that
only appear in the target one. This insight can be generalized
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to a plurality of source and target domains. The same holds
for the set of actions.

When training the target domain model, we no longer ran-
domly initializing all weights. The weights related to the
source domain - both for slots and actions - are copied from
the source model. The pseudocode for this weight initializa-
tion is portrayed in the Algorithm 1.

5 Experiments
All experiments are executed using a setup template. Firstly,
we train a model on the source domain and reuse the com-
mon knowledge to boost the training and testing performance
of the model trained on a different, but similar target domain.
Secondly, we train a model exclusively on the target domain,
without any prior knowledge. This serves as a baseline. Fi-
nally, we compare the results of these two models. We thus
have two different cases:

Figure 3: Slot types in the three different domains

1. Domain Overlap - the sourceMovieBooking and target
RestaurantBooking domains are different, but share a
fraction of the slots.

2. Domain Extension - the source domain, now
RestaurantBooking, is extended to Tourist In-
formation, that contains all the slots from the source
domain along with some additional ones.

The reason for the choice of source domain in the domain
overlap case is designed to enable a direct comparison to the
results of [Li et al., 2017], who built a GO bot for movie
booking. For the domain extension case, the only combina-
tion available wasRestaurant−Tourism. The type of slots
in each domain are given in Figure 3. For each domain, we

Algorithm 1 Transfer Learning Pseudocode

1: procedure INITIALIZEWEIGHTS(sourceWeights, com-
monSlotIndices, commonActionIndices)

2: targetWeigths← RandInit()
3: for i in commonSlotIndices do
4: targetWeigths [i]← sourceWeights [i]

5: for i in commonActionIndices do
6: targetWeigths [i]← sourceWeights [i]

7: return targetWeigths

have a training set of 120 user goals, and a testing set of 32
user goals.

Following the above mentioned setup template, we conduct
two sets of experiments for each of the two cases. The first set
shows the overall performance of the models leveraging the
transfer learning approach. The second set shows the effects
of the warm-starting jointly used with the transfer learning
technique.

In all experiments, when we use a warm-starting, the crite-
rion is to fill agent’s buffer, such that 30 percent of the buffer
is filled with positive experiences (coming from a success-
ful dialogue). After that, we train for nepochs = 50 epochs,
each simulating ndialogues = 100 dialogues. We flush the
agent’s buffer when the agent reaches, for a first time, a suc-
cess rate of srule based = 0.3. We set the maximal number of
allowed dialogue turns nmax turns to 20, thus the negative re-
ward rnegative for a failed dialogue is−20, while the positive
reward rpositive for a successful dialogue is 40. In the con-
secutive dialogue turns over the course of the conversation,
the agent receives a negative reward of rongoing = −1. In all
cases we set ε = 0.05 to leave a space for exploration. By
using this hyperparameters, we prevent the system to overfit
and to generalize very well over the dialogue space. Finally,
we report the success rate as a performance measure.

5.1 Training GO Bots with Less Data
Due to labeling costs, the availability of in-domain data is the
bottleneck for training successful and high performing Goal-
Oriented chatbots. We thus study the effect of transfer learn-
ing on training bots in data-constrained environments.

From the available 120 user goals for each domain’s train-
ing set, we randomly select subsets of 5, 10, 20, 30, 50 and
all 120. We then warm-start and train both the independent
and transfer learning models on these sets. We test the per-
formance on both the training set (training performance) and
the full set of 32 test user goals (testing performance). We
repeat the same experiment 100 times, in order to reduce the
uncertainty introduced by the random selection. Finally, we
report the success rate over the user goal portions with a 95%
confidence interval.

The training and testing results, in the first case of domain
overlapping, are shown in Figure 4a. The success rate of the
model obtained with transfer learning is 65% higher than that
of the model trained without any external prior knowledge. In
absolute terms the success rate climbs on average from 30%
to 50%. For the test dataset, transfer learning improves the
success rate from 25% to 30%, for a still noteworthy 20%
relative improvement.

In the case of domain extension, the difference between
the success rates of the two models is even larger (Figure 4b).
This was expected, as the extended target domain contains all
slots from the source domain, therefore not losing any source
domain information. The overall relative success rate boost
for all user goal portions is on average 112%, i.e. a move
from 40% to 85% in absolute terms. For the test set, this
difference is even larger, from 22 to 80% absolute success
rate, resulting in 263% relative boost.

These results show that transferring the knowledge from
the source domain, we boost the target domain performance
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in data constrained regimes.

5.2 Faster Learning
In a second round of experiments, we study the effects of the
transfer learning in the absence and in combination with the
warm-starting phase. As warm starting requires additional la-
beled data, removing it further reduces the amount of labeled
data needed. We also show that the two methods are compat-
ible, leading to very good joint results.

We report the training and testing learning curves (success
rate over the number of training epochs), such that we use
the full dataset of 120 training user goals and the test set of
32 user goals. We repeat the same process 100 times and
report the results with a 95% confidence interval. The per-
formances in the first case of domain overlapping are shown
in Figure 5a, while for the other case of domain extension,
in Figure 5b. The bot using transfer learning, but no warm-
starting, shows better learning performances than the warm-
started model without transfer learning. Transfer learning is
thus a viable alternative to warm starting.

However, models based on transfer learning have a signif-
icant variance, as the learning is progressing. This happens
because in many experiment runs the success rate over all
epochs is 0. In those cases, the agent does not find an opti-
mal way to learn the policy in the early stages of the training
process. This results with filling its experience replay buffer
mostly with negative experiences. Consequently, in the later
stages, the agent is not able to recover. This makes a combi-
nation with warm starting desirable.

For convenience reasons, in Figure 6 we show all possi-
ble cases of using and combining the transfer learning and
warm-starting techniques. We can see that the model com-
bines the two techniques performs the best by a wide margin.
This leads to a conclusion that the transfer learning is compli-
mentary to the warm-starting, such that their joint application
brings the best outcomes.

(a) Restaurant Booking with pre-training on Movie Booking domain

(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 4: Average training and testing success rates with 95% con-
fidence, for 100 runs over a randomly selected user goal portions of
size 5, 10, 20, 30, 50 and 120, for both models: with and without
transfer learning.

(a) Restaurant Booking with pre-training on Movie Booking domain

(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 5: Average training and testing success rates with 95% con-
fidence, for 100 runs over the number of epochs, for both models:
with and without transfer learning (TF). The model with transfer
learning is not warm-started (WS).

(a) Restaurant Booking with pre-training on Movie Booking domain

(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 6: Success rates for all model combinations - with and with-
out Transfer Learning (TF), with and without Warm Starting (WS).

6 Conclusion
In this paper, we show that the transfer learning technique
can be successfully applied to boost the performances of the
Reinforcement Learning-based Goal-Oriented Chatbots. We
do this for two different use cases: i) when the source and the
target domain overlap, and ii) when the target domain is an
extension of the source domain.

We show the advantages of the transfer learning in a low
data regime for both cases. When a low number of user goals
is available for training in the target domain, transfer learning
makes up for the missing data. Even when the whole target
domain training data is available, the transfer learning bene-
fits are maintained, with the success rate increasing threefold.

We also demonstrate that the transfer knowledge can be a
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replacement of the warm-starting period in the agents or can
be combined with it for best results.

Last but not the least, we create and share two datasets for
training Goal-Oriented Dialogue Systems in the domains of
Restaurant Booking and Tourist Information.
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